
Reverse Engineering Linux x86 Binaries

(c) 2004 Sean Burford

mailto:sb@ultri.cx

Outline

● What is Reverse Engineering?

● Technical Background

● Reverse Engineering Techniques

● Case Study

● Documentation

● Legalities

What is Reverse Engineering?

 "Oh, you can't get out backwards. You've got to go forwards to
go back, better press on." - Willy Wonka

● The process of examining and probing a program to
determining the original design

● The documentation from this process can be used to
◆ Document the characteristics of an unknown program
◆ Clarify published interfaces for interacting with the program
◆ Implement another program to interact with a proprietry program
◆ Modify the features or behaviour of a program

Technical Background

● Network Protocols/File Formats

● Function Calls

● Libraries

● Kernel Functions

● Execution Tracing

● The ELF File Format

● The /proc Filesystem

Function Calls

● When a program is written, it is logically divided into functions,
which call each other to perform tasks.

● Every process has a scratch area referred to as the stack, on
which values are stored in a first in last out fashion.

Libraries

● Libraries contain functions that can be used by many
programs, eg printf()
◆ static executables
◆ dynamic executables
◆ runtime linking

Kernel Functions

● Some library functions need the kernels help, for example to
perform IO.

Execution Tracing

● Execute program in a debugger, monitor or alter live data
values or program behaviour

● xtrace (functions), ltrace (library functions) and strace (system
calls) use the kernels ptrace functionality to intercept and
display calls.

strace -iq /usr/sbin/dhcpd
...
[400f5508] open("/var/lib/dhcp/dhcpd.leases", O_RDONLY) = 4
[400f57c8] lseek(4, 0, SEEK_END) = 467
[400f57c8] lseek(4, 0, SEEK_SET) = 0
[400f56c8] read(4, "# All times in this file are in "..., 467)
 = 467
[400f5641] close(4) = 0
[400f5508] open("/var/lib/dhcp/dhcpd.leases",
 O_WRONLY|O_APPEND|O_CREAT, 0666)
 = -1 EACCES (Permission denied)
[400b6fbd] time([1070352265]) = 1070352265
[40103666] send(3, "Dec 2 18:34:25 dhcpd: "..., 76, 0) = 76

The ELF File Format

● A format for executable object files (eg. executables,
relocatable files, shared object files).

● Divides the file into headers and sections.

● Interesting sections include:

.text: The programs executable instructions

.symtab: The symbol table (imported and exported)

.rel*: Relocation entries (where symbols used)

.data and .data1: Initialised data

.rodata and .rodata1: Initialised read only data

.debug: Symbolic debugging information

The /proc Filesystem

● The proc filesystem is a representation of kernel structures

● It contains much useful information about running processes,
including:
◆ cmdline: command line process was invoked with
◆ maps: memory map of process and libraries
◆ status: process state, privileges, granular memory usage, signal

handling and capabilities
◆ fd: file descriptors in use by process
◆ cwd: link to processes current directory
◆ root: link to processes root directory
◆ mounts: mount table visible to process

A world of tools

● Low Detail, Easy to Learn
◆ strings
◆ ldd
◆ ptools, /proc
◆ strace, ltrace, xtrace
◆ ngrep

● Medium Detail, Some Knowledge Required
◆ Fenris, Ragnarok
◆ REC
◆ Ethereal

● High Detail, Most Knowledge Required
◆ objdump
◆ GDB
◆ TCPDump

Reverse Engineering Techniques

● Mix and Match to suit your objective:
◆ Deadlisting and Disassembly
◆ Live Debugging and Tracing
◆ Enumeration
◆ Library Replacement/Interception

Examining an ELF binary with binutils

● ldd, nm and objdump can dump and disassemble interesting
sections

strings: strings /usr/bin/who
dependencies: ldd /usr/bin/yes
symbols: nm -D -l -S /usr/bin/yes
sections: objdump -h /usr/bin/who
data: objdump -s -j .rodata /usr/bin/who
code: objdump -d -r -j .text /usr/bin/who

Examining an ELF binary with REC

● REC - the Reverse Engineers Compiler

● Recognises "signature" assembly code that compilers
generate for program structures such as conditionals (if, else,
switch) and loops (for, do, while).

● Generates C like code.

● Works with Linux and MS Windows executables.

Live Debugging with GDB

● GNU Debugger

● Supports many CPU architectures, several high level
languages, threading.

Live Debugging with strace

● strace, ltrace and xtrace can attach to processes

● these tools show calls as they happen
ltrace -e fwrite_unlocked ls
fwrite_unlocked("init.d", 1, 6, 0x401585c0) = 6
fwrite_unlocked("rc0.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc2.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc4.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc6.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc.sysinit", 1, 10, 0x401585c0) = 10
init.d rc0.d rc2.d rc4.d rc6.d rc.sysinit
fwrite_unlocked("rc", 1, 2, 0x401585c0) = 2
fwrite_unlocked("rc1.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc3.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc5.d", 1, 5, 0x401585c0) = 5
fwrite_unlocked("rc.local", 1, 8, 0x401585c0) = 8
rc rc1.d rc3.d rc5.d rc.local

Live Debugging with Fenris

● Fenris is a set of tools; Fenris, Aegir, Ragnarok, Dress

● A bit like having strace, ltrace, gdb, objdump and REC rolled
into one

● Fenris: backend, tracer

● Aegir: client, interactive debugger

● Ragnarok: trace to HTML

● Dress: rebuilds stripped symbol table
[0804b158] 02 local fnct_11 (g/805ace7 "fenris.h")
[0804b158] 02 + 805ace7 = 805ace7:9 (first seen in F fnct_13:fnct_14)
[4009ee3e] 03 L strlen (805ace7 "fenris.h") = 8
[4009ee3e] 03 + 805ace7 = 805ace7:9 (first seen in F fnct_13:fnct_14)
[0804eb74] 03 local fnct_6 (9) (Click here for trace of this function)
[0804eaf3] 03 ...return from function = ""
[4009e8cf] 03 L strcpy (805bc58, 805ace7 "fenris.h") = 805bc58
[4009e8cf] 03 + 805ace7 = 805ace7:9 (first seen in F fnct_13:fnct_14)
[4009e8cf] 03 + 805bc58 = 805bc58:9 (first seen in L fnct_14:malloc)
[4009e8cf] 03 \ buffer 805bc58 modified.
[4009e8cf] 03 \ data migration: 805ace7 to 805bc58
[0804eb84] 02 ...return from function = ""

Network Enumeration

● Given reasonable knowledge of the protocol, alter one value
over its range and observe results.
◆ May trigger informative error messages.

● Libnet/LibPCap can be used to quickly build custom packets.

Enumeration with Plugins

● A variation on "poke and fsck"

● Stick values into the API and see what happens.

● eg. Determining data available to Netscape Directory Server
plugins:
◆ plugins are shared libraries
◆ parameters passed in "parameter block"
◆ slapi_pblock_get(pb, SLAPI_*, &value);
◆ SLAPI_* is actually a number

❐ Calling for SLAPI_* 1 to 300 reveals all parameters
❐ Interpreting the return values is another challenge
❐ Some values actually crash slapd
❐ Some values cause warnings in logs

Library Replacement/Interception

● LD_PRELOAD instructs the linker to preload shared libraries.

● This can be used to replace standard library functions.
◆ eg. replace time(2) to return a different date to test for Y3k bugs.
◆ or replace socket(), connect(), read(), write() for network or file

interception

Case Study: an MPEG library

● Via produce a great little (22cm x 19cm) motherboard.

● They only produce binary drivers for the on board MPEG
decoder, limitting its use to certain kernels and Linux
distributions.

● Drivers include a shared library and kernel modules.

● "GPL plus additional rights".

● Ivor Hewitt reverse engineered the MPEG library.

● Reversing of the rest of the driver is apparently underway.

Methodology

● By examining a disassembly, write similar C code.

● Examine function calls to determine arguments.

● Analyse function call tree to determine structure.

Tools

● objdump

● header files

● IDA-Pro

Results

● Reproduced source code for library.

● Source code reveals how to talk to kernel module.

● Some patches have been made to Video 4 Linux and XFree86
to support the MPEG hardware as a result of this project.

● Definately not and example of clean room reverse engineering.

Documentation

● Make useful insight available

● Provide a history of your discoveries

● Document progress to prevent repetition

The Call Tree

● Shows what functions are called where, as a tree.

● Useful for getting a feel for the program flow.

● Can identify the purpose of a function.

● Fenris' Ragnarok can generate a similar tree from an
execution trace.

 	.- main 	 	
 	| .- setlocale 	 	
 	| | brk
 	| | brk
 	| | brk
 	| | open
 	| | fstat64
 	| | mmap
 	| | read
 	| | brk
 	| | read
 	| | close
 	| | munmap

Writing API Documentation

● For each callable function, document the purpose and
parameters.

● Almost a prerequisite for interacting with an API.

● See Unix's section 2 and 3 man pages for excellent examples
of API documentation.
◆ Name
◆ Synopsis
◆ Description
◆ Parameters
◆ Return Value
◆ See Also

Writing Pseudocode

● For each interesting function, or even the entire program, write
a pseudocode representation of the alogrithm.

● Pseudocode seperates the code from the concepts and ideas.
◆ eg. bubblesort:

Assume the list is not sorted (sorted is set to false)
while(!sorted)
{
 Assume the list is sorted (sorted is set to true)
 Set i to loop through list from first to last - 1
 {
 if list[i] and list[i + 1] are not in the right order
 {
 switch them (called a swap)
 set sorted to false
 }
 }
}
example from http://www.rrcc-online.com/~julies/csc160/bubble.htm

Network Protocols

● RFCs contain many examples of how to document network
protocols.

● Eg, from RFC 1885: ICMPv6:
The ICMPv6 messages have the following general format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Code | Checksum |
 +-+
 | |
 + Message Body +
 | |

 The type field indicates the type of the message. Its value
 determines the format of the remaining data.

 The code field depends on the message type. It is used to create an
 additional level of message granularity.

 The checksum field is used to detect data corruption in the ICMPv6
 message and parts of the IPv6 header.

File Formats

● Hex editors are great if you can spot a pattern.

● If not, you can use strace to examine file access patterns, or
Fenris' aegir to analyse memory buffer accesses

● Failing that, you may have to disassemble the file access
routines.

● Once you have the file format, documentation should be
similar to that for network protocols

Legalities

● If in doubt, seek professional legal advice
◆ Copyright Amendment (Digital Agenda) Act 2000
◆ Trade Secrets
◆ Software Patents

Questions?

Further References

● Introduction to Reverse Engineering Software
◆ http://www.acm.uiuc.edu/sigmil/RevEng/

● Executable and Linking Format (ELF)
◆ http://www.skyfree.org/linux/references/ELF_Format.pdf

● Andrew Tridgell's Network Analysis Techniques presentation
◆ http://us1.samba.org/samba/ftp/slides/net_analysis.pdf

● REC: The Reverse Engineers Compiler
◆ http://www.backerstreet.com/rec/rec.htm

● Fenris: debugger, tracer, decompiler
◆ http://razor.bindview.com/tools/fenris/

● Ivor's Via Mini-ITX MPEG library page
◆ http://www.ivor.it/cle266/

Further References - 2

● Legalities
◆ Electronic Frontiers Australia

❐ http://www.efa.org.au
◆ Australian Digital Alliance

❐ http://www.digital.org.au
◆ ipcr 2000: Review of intellectual propery legislation under the

Competition Principles Agreement
❐ Intellectual Property and Competition Review Committee
❐ http://www.ipcr.gov.au/

◆ Chilling Effects Clearinghouse
❐ http://www.ipcr.gov.au/

	Title
	Outline
	What is Reverse Engineering?
	Technical Background
	Function Calls
	Libraries
	Kernel Functions
	Execution Tracing
	The ELF File Format
	The /proc Filesystem
	A world of tools
	Reverse Engineering Techniques
	Examining an ELF binary with binutils
	Examining an ELF binary with REC
	Live Debugging with GDB
	Live Debugging with strace
	Live Debugging with Fenris
	Network Enumeration
	Enumeration with Plugins
	Library Replacement/Interception
	Case Study: an MPEG library
	Methodology
	Tools
	Results
	Documentation
	The Call Tree
	Writing API Documentation
	Writing Pseudocode
	Network Protocols
	File Formats
	Legalities
	Questions?
	Further References
	Further References - 2

